Molecular dynamics simulation of argon isochoric transition to supercritical state

Author:

Ran Yunmin1,Bertola Volfango1ORCID

Affiliation:

1. Laboratory of Technical Physics University of Liverpool Liverpool UK

Abstract

AbstractThe effect of the initial atoms distribution on the molecular dynamics (MD) simulation of a model atomic fluid (argon) is investigated for the case of the isochoric phase transition to the supercritical state. In particular, the case of uniformly distributed atoms in the simulation domain is compared with the case of separated liquid and vapor atoms. The sensitivity of simulations to asymmetric nanoscale perturbations in the boundary is also studied. Despite its high computational cost, the MD approach has the potential to successfully address long‐standing problems in computational fluid dynamics (CFD), especially those associated with mathematical singularities, such as contact angles, vortices, phase transitions and so forth. Unlike conventional CFD simulations, where the initial condition is the pressure or velocity distribution in the simulation domain, MD simulations also require the initial position of each molecule. Thus, it is important to understand whether a judicious choice of the initial distribution of molecules can reduce the overall computation time of the simulation. The evolution of the model fluid system during the phase transition was simulated using a Lennard‐Jones interatomic potential, corrected with the Lorentz–Berthelot mixing rule for the interactions with the solid walls. The system was allowed to relax until equilibrium, and then a Heaviside temperature step was applied to the wall to bring the system to supercritical conditions. Results show the initial choice of the atoms distribution can significantly affect the computational time, while the effect of asymmetric perturbations on the boundary is negligible.

Funder

Engineering and Physical Sciences Research Council

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3