NT5DC2 knockdown suppresses progression, glycolysis, and neuropathic pain in triple‐negative breast cancer by blocking the EGFR pathway

Author:

Sang Rui1,Yu Xiaoping12,Xia Han2,Qian Xingxing1,Yong Jiacheng1,Xu Yan12,Sun Yan1,Yao Yiran2,Zhou Jing1,Zhuo Shuangshuang2

Affiliation:

1. Health Management Center Affiliated Hospital of Yangzhou University Yangzhou China

2. Department of Ultrasound, Medical Imaging Center Affiliated Hospital of Yangzhou University Yangzhou China

Abstract

AbstractTriple‐negative breast cancer (TNBC) is an exceptionally aggressive breast cancer subtype associated with neuropathic pain. This study explores the effects of 5′‐nucleotidase domain‐containing protein 2 (NT5DC2) on the progression of TNBC and neuropathic pain. Microarray analysis was conducted to identify differentially expressed genes in TNBC and the pathways involved. Gain‐ and loss‐of‐function assays of NT5DC2 were performed in TNBC cells, followed by detection of the extracellular acidification rate, adenosine triphosphate (ATP) levels, lactic acid production, glucose uptake, proliferation, migration, and invasion in TNBC cells. Macrophages were co‐cultured with TNBC cells to examine the release of polarization‐related factors and cytokines. A xenograft tumor model was established for in vivo validation. In addition, a mouse model of neuropathic pain was established through subepineural injection of TNBC cells, followed by measurement of the sciatic functional index and behavioral analysis to assess neuropathic pain. NT5DC2 was upregulated in TNBC and was positively correlated with epidermal growth factor receptor (EGFR). NT5DC2 interacted with EGFR to promote downstream signal transduction in TNBC cells. NT5DC2 knockdown diminished proliferation, migration, invasion, the extracellular acidification rate, ATP levels, lactic acid production, and glucose uptake in TNBC cells. Co‐culture with NT5DC2‐knockdown TNBC cells alleviated the M2 polarization of macrophages. Furthermore, NT5DC2 knockdown reduced tumor growth and neuropathic pain in mice. Importantly, activation of the EGFR pathway counteracted the effects of NT5DC2 knockdown. NT5DC2 knockdown protected against TNBC progression and neuropathic pain by inactivating the EGFR pathway.

Publisher

Wiley

Subject

Cancer Research,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3