Discrimination of ground‐glass nodular lung adenocarcinoma pathological subtypes via transfer learning: A multicenter study

Author:

Fu Chun‐Long1,Yang Ze‐Bin1,Li Ping23,Shan Kang‐Fei1,Wu Mei‐Kang1,Xu Jie‐Ping1,Ma Chi‐Jun1,Luo Fang‐Hong2,Zhou Long2,Sun Ji‐Hong245,Zhao Fen‐Hua1ORCID

Affiliation:

1. Department of Radiology Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China

2. Department of Radiology, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou China

3. Department of Radiology Jiaxing Hospital of Traditional Chinese Medicine Jiaxing China

4. Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province Ningbo China

5. Cancer Center Zhejiang University Hangzhou China

Abstract

AbstractBackgroundThe surgical approach and prognosis for invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA) of the lung differ. However, they both manifest as identical ground‐glass nodules (GGNs) in computed tomography images, and no effective method exists to discriminate them.MethodsWe developed and validated a three‐dimensional (3D) deep transfer learning model to discriminate IAC from MIA based on CT images of GGNs. This model uses a 3D medical image pre‐training model (MedicalNet) and a fusion model to build a classification network. Transfer learning was utilized for end‐to‐end predictive modeling of the cohort data of the first center, and the cohort data of the other two centers were used as independent external validation data. This study included 999 lung GGN images of 921 patients pathologically diagnosed with IAC or MIA at three cohort centers.ResultsThe predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). The model had high diagnostic efficacy for the training and validation groups (accuracy: 89%, sensitivity: 95%, specificity: 84%, and AUC: 95% in the training group; accuracy: 88%, sensitivity: 84%, specificity: 93%, and AUC: 92% in the internal validation group; accuracy: 83%, sensitivity: 83%, specificity: 83%, and AUC: 89% in one external validation group; accuracy: 78%, sensitivity: 80%, specificity: 77%, and AUC: 82% in the other external validation group).ConclusionsOur 3D deep transfer learning model provides a noninvasive, low‐cost, rapid, and reproducible method for preoperative prediction of IAC and MIA in lung cancer patients with GGNs. It can help clinicians to choose the optimal surgical strategy and improve the prognosis of patients.

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3