Changes in fat uptake, color, texture, and sensory properties of Aloe vera gel‐coated eggplant rings during deep‐fat frying process

Author:

Varidi Mehdi1ORCID,Ahmadzadeh‐Hashemi Saba1,Nooshkam Majid1

Affiliation:

1. Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad (FUM) Mashhad Iran

Abstract

AbstractThere is a widespread use of deep‐fat frying in both domestic and industrial sections, and deep‐fat fried foods are extremely popular due to their taste, color, and crispy texture. Human health can be, however, seriously compromised by the excessive consumption of oil, especially saturated fats and trans fatty acids. The use of hydrocolloids in inhibiting oil absorption has garnered considerable attention. This study was therefore aimed to lower the oil absorption in eggplant rings during the deep‐fat frying process with the aid of Aloe vera gel coating. The effects of gel concentration (0%, 50%, and 100%), frying time (2, 5, and 8 min), and frying temperature (160°C and 180°C) on the oil uptake, moisture content, texture, color, and sensory properties of the eggplant rings were evaluated. The gel coating led to a decrease in oil uptake (up to 50%), hardness (up to 0.98‐fold), ΔE (up to 0.89‐fold), and overall acceptance (up to 0.85‐fold), and an increase in moisture content (up to 1.47‐fold) and lightness (up to 1.14‐fold) of the samples. The frying time and temperature also influenced the physiochemical and sensory properties of the eggplant rings. The sample coated with 50% gel and fried at 180°C for 8 min had lower oil content and water loss with the highest acceptance rate in terms of taste, color, odor, texture, and appearance. The Aloe vera gel could be, therefore, a good candidate with high nutritional and economic value to reduce oil uptake in fried food products.

Funder

Ferdowsi University of Mashhad

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3