On the architecture of starch granules revealed by iodine vapor binding and lintnerization. Part 1: Microscopic examinations

Author:

Bertoft Eric1ORCID,Annor George2,Vamadevan Varatharajan3,Lin Amy Hui‐Mei1

Affiliation:

1. Bi‐State School of Food Science University of Idaho Moscow Idaho USA

2. Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA

3. Cargill Minneapolis Minnesota USA

Abstract

AbstractStructural nature of glucan chains in the amorphous part of granular starch was examined by iodine vapor treatment and lintnerization. Four iodine‐stained amylose‐containing normal starches and their waxy counterparts were examined under a microscope before, during, and after lintnerization. The presence of amylose retarded the lintnerization rate. The degree of retardation correlated with the structural type of the amylopectin component, suggesting that potato amylopectin (type 4 structure) interacts with amylose in the granules, whereas in barley granules (type 1 structure) the interaction is very weak. The inclusion complexes with iodine were not degraded by the acid treatment. Therefore, the iodine‐glucan chain complex formation could be used to study the structural nature of the flexible, amorphous parts of the starch granules. Indeed, at the end of lintnerization, when 20%–30% of the granules remained, substantial amounts of blue‐stained complexes were washed out from the granules especially from amylose‐containing barley and maize starch, but also from both normal and waxy cassava and potato starch. The complexation with iodine did not affect the rate of lintnerization. This suggested that single helical structures were present during lintnerization also in the absence of iodine and this conformation was the reason for the acid resistance.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3