Error Estimates of a Space‐Time Spectral Method for Nonlinear Klein–Gordon Equation With Unknown Coefficients

Author:

Qiao Yan12ORCID,Wu Hua12ORCID

Affiliation:

1. Department of Mathematics Shanghai University Shanghai China

2. Newtouch Center for Mathematics Shanghai University Shanghai China

Abstract

ABSTRACTA space‐time spectral method combined with mollification method is proposed for the inverse coefficient problem of the nonlinear Klein–Gordon equation. The spectral scheme is utilized to reconstruct an unknown time‐dependent coefficient and wave displacement in a nonlinear Klein–Gordon equation. We apply the Legendre–Galerkin method in spatial direction and the Legendre–Petrov–Galerkin method in temporal direction. We calculate the nonlinear term with the pseudospectral treatment by using Chebyshev‐Gauss‐Lobatto interpolation, which is efficiently computed via the fast Legendre transform. For the perturbed measurements, we apply the appropriate mollification method to obtain stable numerical differentiation and smooth boundary data. Using rigorous error estimates, we establish the convergence and stability of the iterative solution for the fully‐discrete algorithm. Especially, we also present, for the first time, the convergence and stability analysis of the iterative solution that combines spectral methods with regularization techniques. Numerical results show the efficiency and stability of this approach and agree well with the theoretical analysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3