Sulforaphene targets NLRP3 inflammasome to suppress M1 polarization of macrophages and inflammatory response in rheumatoid arthritis

Author:

Ye Qiao1ORCID,Yan Tingting1,Shen Jie1,Shi Xianghui1,Luo Fang1,Ren Yanxia1

Affiliation:

1. Department of Rheumatology and Immunology The Second Affiliated Hospital of Jiaxing University Jiaxing China

Abstract

AbstractThis work aimed to explore the therapeutic effect and target of sulforaphene (LF) in mice with rheumatoid arthritis (RA). Lipopolysaccharide (LPS) and IFN‐γ were added to induce the M1 polarization of SMG cells, and later cells were pretreated with 5 μM and 15 μM LF. M1 cell proportion was detected by flow cytometry (FCM), inflammatory factors were measured by enzyme‐linked immunosorbent assay, and protein levels were analyzed by western blotting (WB) assay. Besides, small molecule‐protein docking and pull‐down assays were carried out to detect the binding of LF to NLRP3. After the knockdown of NLRP3 in SMG cells, the effect of LF was further detected. The RA mouse model was induced with collagen antibody and LPS, after LF intervention, H&E staining was performed to detect the pathological changes in mouse synovial membrane, whereas safranin O‐fast green staining was performed to detect cartilage injury, NLRP3 inflammasome and inflammatory factor levels in tissues. LF suppressed M1 polarization of macrophages, reduced M1 cell proportion and inflammatory factor levels, and suppressed the activation of NLRP3 inflammasome. After NLRP3 knockdown, LF did not further suppress the M1 polarization of macrophages. Pull‐down assay suggested that LF bound to NLRP3. As revealed by mouse experimental results, LF inhibited bone injury in mice, decreased M1 cell infiltration and inflammatory response in tissues, and inhibited NLRP3 inflammasome expression in tissues. LF targets NLRP3 to suppress the M1 polarization of macrophages and decrease tissue inflammation in RA.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3