Analytical theory for one‐dimensional consolidation of clayey soils exhibiting rheological characteristics under time‐dependent loading

Author:

Xie Kang‐He,Xie Xin‐Yu,Li Xi‐Bin

Abstract

AbstractThis paper presents analytical solutions to the one‐dimensional consolidation problem taking into consideration the rheological properties of clayey soil under variable loadings. A four‐element rheological model is introduced, and different loading types are involved, i.e. constant loading, one‐step loading, triangular loading, rectangular loading, and isosceles–trapezoidal cyclic loading. The differential equations governing consolidation are solved by the Laplace transform. Based on the solutions obtained, the influences of the rheological parameters and loading conditions on the consolidation process are investigated. It has been shown that the consolidation behavior is mainly governed by four dimensionless parameters, a1, a2, b, and Tv0. Load shape has a great influence on the rate of consolidation. A decrease either in the modulus of the spring in the Kelvin body or in the viscosity coefficient of independent dashpot will slow down the rate of consolidation. An increase in the viscosity coefficient of the dashpot in the Kelvin body will make the rate of consolidation increase at an early stage but decrease at a later stage. For isosceles–trapezoidal cyclic loading, the consolidation rate in each cycle reaches a maximum at the end of the constant loading phase and the minimum at the end of this cycle. Copyright © 2008 John Wiley & Sons, Ltd.

Publisher

Wiley

Reference13 articles.

1. Consolidation of soils under time dependent loading and varying permeability;Shifftman RL;Proceedings Highway Research,1958

2. Consolidation under time‐dependent loading;Olson RE;Journal of Geotechnical Engineering Division,1977

3. Consolidation of soils under cyclic loading;Wilson NE;Canadian Geotechnical Journal,1974

4. Consolidation theory of cyclic loading;Baligh MM;Journal of Geotechnical Engineering Division,1978

5. FavarettiM SoranzoM.A simplified consolidation theory in cyclic loading conditions. Proceedings of International Symposium on Compression and Consolidation of Clayey Soils vol. 1 Japan 1995;405–409.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3