A two‐stage group‐sequential design for delayed treatment responses with the possibility of trial restart

Author:

Schüürhuis Stephen1ORCID,Konietschke Frank1ORCID,Kunz Cornelia Ursula2ORCID

Affiliation:

1. Charité ‐ Universitätsmedizin Berlin Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Biometry and Clinical Epidemiology Berlin Germany

2. Biostatistics and Data Sciences Boehringer Ingelheim GmbH & Co. KG Biberach an der Riß Germany

Abstract

Common statistical theory applicable to confirmatory phase III trial designs usually assumes that patients are enrolled simultaneously and there is no time gap between enrollment and outcome observation. However, in practice, patients are enrolled successively and there is a lag between the enrollment of a patient and the measurement of the primary outcome. For single‐stage designs, the difference between theory and practice only impacts on the trial duration but not on the statistical analysis and its interpretation. For designs with interim analyses, however, the number of patients already enrolled into the trial and the number of patients with available outcome measurements differ, which can cause issues regarding the statistical analyses of the data. The main issue is that current methodologies either imply that at the time of the interim analysis there are so‐called pipeline patients whose data are not used to make a statistical decision (like stopping early for efficacy) or the enrollment into the trial needs to be at least paused for interim analysis to avoid pipeline patients. There are methods for delayed responses available that introduced error‐spending stopping boundaries for the enrollment of patients followed by critical values to reject the null hypothesis in case the stopping boundaries have been crossed beforehand. Here, we will discuss other solutions, considering different boundary determination algorithms using conditional power and introducing a design allowing for recruitment restart while keeping the type I error rate controlled.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3