Glucose metabolism‐based signature predicts prognosis and immunotherapy strategies for colon adenocarcinoma

Author:

Bai Zilong1,Yan Chunyu2,Nie Yuanhua1,Zeng Qingnuo1,Xu Longwen1,Wang Shilong1,Chang Dongmin1

Affiliation:

1. Department of Surgical Oncology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi China

2. Department of Endocrinology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shanxi China

Abstract

AbstractBackgroundThe global prevalence and metastasis rates of colon adenocarcinoma (COAD) are high, and therapeutic success is limited. Although previous research has primarily explored changes in gene phenotypes, the incidence rate of COAD remains unchanged. Metabolic reprogramming is a crucial aspect of cancer research and therapy. The present study aims to develop cluster and polygenic risk prediction models for COAD based on glucose metabolism pathways to assess the survival status of patients and potentially identify novel immunotherapy strategies and related therapeutic targets.MethodsCOAD‐specific data (including clinicopathological information and gene expression profiles) were sourced from The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE33113 and GSE39582). Gene sets related to glucose metabolism were obtained from the MSigDB database. The Gene Set Variation Analysis (GSVA) method was utilized to calculate pathway scores for glucose metabolism. The hclust function in R, part of the Pheatmap package, was used to establish a clustering system. The mutation characteristics of identified clusters were assessed via MOVICS software, and differentially expressed genes (DEGs) were filtered using limma software. Signature analysis was performed using the least absolute shrinkage and selection operator (LASSO) method. Survival curves, survival receiver operating characteristic (ROC) curves and multivariate Cox regression were analyzed to assess the efficacy and accuracy of the signature for prognostic prediction. The pRRophetic program was employed to predict drug sensitivity, with data sourced from the Genomics of Drug Sensitivity in Cancer (GDSC) database.ResultsFour COAD subgroups (i.e., C1, C2, C3 and C4) were identified based on glucose metabolism, with the C4 group having higher survival rates. These four clusters were bifurcated into a new Clust2 system (C1 + C2 + C3 and C4). In total, 2175 DEGs were obtained (C1 + C2 + C3 vs. C4), from which 139 prognosis‐related genes were identified. ROC curves predicting 1‐, 3‐ and 5‐year survival based on a signature containing nine genes showed an area under the curve greater than 0.7. Meanwhile, the study also found this feature to be an important predictor of prognosis in COAD and accordingly assessed the risk score, with higher risk scores being associated with a worse prognosis. The high‐risk and low‐risk groups responded differently to immunotherapy and chemotherapeutic agents, and there were differences in functional enrichment pathways.ConclusionsThis unique signature based on glucose metabolism may potentially provide a basis for predicting patient prognosis, biological characteristics and more effective immunotherapy strategies for COAD.

Publisher

Wiley

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3