Rapamycin encourages the maintenance of mitochondrial dynamic balance and mitophagy activity for improving developmental competence of blastocysts in porcine embryos in vitro

Author:

Park Hyo‐Jin12,Heo Gyeong‐Deok12,Yang Seul‐Gi12,Koo Deog‐Bon12ORCID

Affiliation:

1. Department of Biotechnology, College of Engineering Daegu University Gyeongsan Gyeongbuk South Korea

2. Institute of Infertility Daegu University Gyeongsan Gyeongbuk South Korea

Abstract

AbstractRapamycin induces autophagosome formation and activity during oocyte maturation, improved fertilization ability of matured oocytes, and early embryonic developmental competence. However, potential changes in mitochondrial fission and mitophagy via regulation of autophagy in early porcine embryonic development have not been previously studied. Here, we investigated embryonic developmental ability and quality of porcine embryos 2 days after in vitro fertilization and following treatment with 1 and 10 nM rapamycin. As a results, 1 nM rapamycin exposure significantly improved (p < 0.05) blastocyst developmental competence compared to that in nontreated embryos (nontreated: 26.2 ± 5.7% vs. 1 nM rapamycin: 35.3 ± 5.1%). We observed autophagic (LC3B) and mitochondrial fission protein expression (dynamin‐related protein‐1 [DRP1] and pDRP1‐Ser616) at the cleavage stage of 1 and 10 nM rapamycin‐treated porcine embryos, using Western blot and immunofluorescence analyses. Interestingly, 1 nM rapamycin treatment significantly improved autophagy formation, mitochondrial activation, and mitochondrial fission protein levels (p < 0.05; p‐DRP1 [Ser616]) at the cleavage stage of porcine embryos. Additionally, mitophagy was significantly increased in blastocysts treated with 1 nM rapamycin. In conclusion, our results suggest that rapamycin promotes blastocyst development ability in porcine embryos through mitochondrial fission, activation, and mitophagy in in vitro culture.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3