Data‐driven dynamical analysis of an age‐structured model: A graph‐theoretic approach

Author:

Deolia Preeti1,Singh Anuraj1ORCID

Affiliation:

1. Department of Engineering Sciences Atal Bihari Vajpayee Indian Institute of Information Technology and Management Gwalior Gwalior M.P. India

Abstract

The dynamics of the propagation and outspread of infectious diseases are eminently intricate, mainly due to the heterogeneity of the host individuals. In this paper, an age‐stratified SEIR (susceptible‐exposed‐infected‐recovered) epidemiological model incorporating saturated treatment function and heterogeneous contact rates is developed to study infectious disease transmission dynamics among various age groups. The expression for the basic reproduction number and conditions for the global stability of the system have been derived by a recently developed graph‐theoretic (GT) approach. Digraph reduction creates a GT version of the Gauss elimination method for computing the . The global dynamics results have been formed by constructing the Lyapunov function using a GT approach. The endemic equilibrium exists uniquely if , whereas the disease‐free equilibrium is observed to be globally stable if . The numerical simulations are demonstrated by extracting the daily reported COVID‐19 cases for the second wave in Italy. The age‐dependent contact matrix for the Republic of Italy (data sourced from the POLYMOD study) is computed via paper–diary methodology (PDM) grounded on a population‐prospective survey in European countries. Our numerical findings imply that (i) for the age group (20–49) years and (50–69) years, the number of infected persons is quite double as compared with the exposed cases; (ii) approximately 50% of positive cases lies in (20–69) years age group; (iii) for the (00–19) years age group, only half of the exposed individuals got infected; and (iv) a consistent graph is detected for the age group of (70–99) years in both cases; it shows that almost all the exposed got infected.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3