Lanosterol synthase deficiency promotes tumor progression by orchestrating PDL1‐dependent tumor immunosuppressive microenvironment

Author:

Gao Yuan1,Zhao Kun1,Huang Yulan1,Zhang Dapeng1,Luo Na1,Peng Xiaoqing2,Yang Feng3,Xiao Weidong3,Wang Meng1,Shi Rongchen4,Miao Hongming15ORCID

Affiliation:

1. Department of Pathophysiology College of High Altitude Military Medicine Third Military Medical University (Army Medical University) Chongqing China

2. Department of Oncology Fuling Hospital Chongqing University Chongqing China

3. Department of General Surgery Xinqiao Hospital Third Military Medical University (Army Medical University) Chongqing China

4. Frontier Medical Training Brigade Third Military Medical University (Army Medical University) Xinjiang China

5. Jinfeng Laboratory Chongqing China

Abstract

AbstractLipid metabolic reprogramming is closely related to tumor progression with the mechanism not fully elucidated. Here, we report the immune‐regulated role of lanosterol synthase (LSS), an essential enzyme in cholesterol synthesis. Database analysis and clinical sample experiments suggest that LSS was lowly expressed in colon and breast cancer tissues, which indicates poor prognosis. The biological activity of tumor cell lines and tumor progression in NOD scid gamma (NSG) mice were not affected after LSS knockdown, whereas LSS deficiency obviously aggravated tumor burden in fully immunized mice. Flow cytometry analysis showed that LSS knockdown significantly promoted the formation of tumor immunosuppressive microenvironment, characterized by the increase in M2 macrophages and polymorphonuclear myeloid‐derived suppressor cells (PMN‐MDSCs), as well as the decrease in anti‐tumoral T lymphocytes. With the inhibition of myeloid infiltration or loss function of T lymphocytes, the propulsive effect of LSS knockdown on tumor progression disappeared. Mechanistically, LSS knockdown increased programmed death ligand 1 (PDL1) protein stability by 2,3‐oxidosqualene (OS) binding to PDL1 protein. Anti‐PDL1 therapy abolished LSS deficiency‐induced immunosuppressive microenvironment and cancer progression. In conclusion, our results show that LSS deficiency promotes tumor progression by establishing an OS–PDL1 axis‐dependent immunosuppressive microenvironment, indicative of LSS or OS as a potential hallmark of response to immune checkpoint blockade.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Chongqing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3