Lipophilic AIEgens as the “Trojan Horse” with Discrepant Efficacy in Tracking and Treatment of Mycobacterial Infection

Author:

Shi Chunzi12ORCID,Huang Xueni1,Wang Dong3ORCID,Chu Chengshengze4,Shi Yuxin1,Yan Bo1,Shan Fei1,Zhang Jiulong1,Zhang Zhiyong1,Peng Chen1ORCID,Tang Ben Zhong4ORCID

Affiliation:

1. Qingdao Institute School of Life Medicine Department of Radiology Shanghai Public Health Clinical Center Fudan University Qingdao 266500 China

2. Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China

3. Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

4. School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen 518172 China

Abstract

AbstractThe highly contagious tuberculosis is a leading infectious killer, which urgently requires effective diagnosis and treatment methods. To address these issues, three lipophilic aggregation‐induced emission (AIE) photosensitizers (TTMN, TTTMN, and MeOTTMN) are selected to evaluate their labeling and antimicrobial properties in vitro and in vivo. These three lipophilic AIEgens preserve low cytotoxicity and achieve real‐time and non‐invasive visualization of the process of mycobacteria infection in vitro and in vivo. More importantly, these AIEgens can be triggered by white light to produce reactive oxygen species (ROS), which is a highly efficient antibacterial reagent. Among these AIEgens, the TTMN photosensitizer has an outstanding antibacterial efficacy over the clinical first‐line drug rifampicin at the same therapeutic concentration. Interestingly, this study also finds that TTMN can increase the expression of pro‐inflammatory cytokines in the early stage of infection after light irradiation, indicating an additional pro‐inflammatory role of TTMN. This work provides some feasibility basis for developing AIEgens‐based agents for effectively destroying mycobacterium.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant & its Bioactive Components Uses in Cardio-Potential Diseases: A Sectional Study for Different Herbs;Journal for Research in Applied Sciences and Biotechnology;2023-10-25

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3