Strontium/Silicon/Calcium‐Releasing Hierarchically Structured 3D‐Printed Scaffolds Accelerate Osteochondral Defect Repair

Author:

Li Cheng Ji12,Park Jeong‐Hui1,Jin Gang Shi1,Mandakhbayar Nandin1,Yeo Donghyeon12,Lee Jun Hee12345,Lee Jung‐Hwan12356,Kim Hye Sung1235ORCID,Kim Hae‐Won12345

Affiliation:

1. Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan 31116 Republic of Korea

2. Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine Dankook University Cheonan 31116 Republic of Korea

3. Dankook Physician Scientist Research Center Dankook University Hospital Cheonan 31116 Republic of Korea

4. Department of Biomaterials Science, College of Dentistry Dankook University Cheonan 31116 Republic of Korea

5. Mechanobiology Dental Medicine Research Center Dankook University Cheonan Chungcheongnam‐do 31116 Republic of Korea

6. Cell and Matter Institute Dankook University Cheonan 31116 Republic of Korea

Abstract

AbstractArticular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self‐healing capacity and damaging bone structures. To tackle this problem, a scaffold‐mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε‐caprolactone) and strontium (Sr)‐doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn‐embedded scaffolds (SrBGn‐µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation‐related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow‐derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn‐µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3