Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications

Author:

Sun Xueheng1,Xu Xiang2,Yue Xiaokun2,Wang Tianchang2,Wang Zhaofei3,Zhang Changru24,Wang Jinwu12ORCID

Affiliation:

1. Department of Sport Rehabilitation Shanghai University of Sport Shanghai 200438 China

2. Shanghai Key Laboratory of Orthopaedic Implant Department of Orthopaedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine No. 639 Zhizaoju Rd Shanghai 200011 China

3. Department of Orthopaedic Surgery Shanghai ZhongYe Hospital Genertec Universal Medical Group Shanghai 200941 China

4. Institute of Translational Medicine Shanghai Jiaotong University No. 800 Dongchuan Road Shanghai 200240 China

Abstract

AbstractWith the discovery of the intrinsic enzyme‐like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi‐enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3