Affiliation:
1. Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
2. School of Power and Mechanical Engineering The Institute of Technological Science Wuhan University South Donghu Road 8 Wuhan 430072 China
Abstract
AbstractThe topographic cues of wound dressings play important roles in regulating cellular behaviors, such as cellular migration and morphology, and are capable of providing a prolonged stimulus for promoting wound healing. However, 3D porous dressings that can guide wound healing from the periphery to the center are poorly studied. Herein, radial sponges with adjustable lamellar spacing and microridge spacing by ice templating are developed to facilitate wound healing. With denser lamellae and microridges, fibroblasts achieve a more orderly arrangement, a larger elongation, and a greater migration rate. Meanwhile, the elongated state enables human umbilical vein endothelial cells to vascularization. The faster healing rate and a higher degree of vascularization based on radial sponges are further demonstrated in full‐thickness skin defects in rats. Taken together, radial sponges with the densest lamellae and microridges perform the best in guiding the wound from the periphery to the center of the repair environment. It is believed that the proposed structure here can be combined with various biochemical factors to provide dressings with functions.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献