Copper Ion‐Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro‐Vascularized Bone Regeneration

Author:

Xu Yan1,Xu Chao2,Yang Kun2,Ma Liang1,Li Gaocai1,Shi Yunsong1,Feng Xiaobo1,Tan Lei1,Duan Deyu1,Luo Zhiqiang2,Yang Cao1ORCID

Affiliation:

1. Department of Orthopaedics Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430074 China

2. College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430022 China

Abstract

AbstractSevere bone defects accompanied by vascular and peripheral nerve injuries represent a huge orthopedic challenge and are often accompanied by the risk of infection. Thus, biomaterials with antibacterial and neurovascular regeneration properties are highly desirable. Here, a newly designed biohybrid biodegradable hydrogel (GelMA) containing copper ion‐modified germanium‐phosphorus (GeP) nanosheets, which act as neuro‐vascular regeneration and antibacterial agents, is designed. The copper ion modification process serves to improve the stability of the GeP nanosheets and offers a platform for the sustained release of bioactive ions. Study findings show that GelMA/GeP@Cu has effective antibacterial properties. The integrated hydrogel can significantly boost the osteogenic differentiation of bone marrow mesenchymal stem cells, facilitate angiogenesis in human umbilical vein endothelial cells, and up‐regulate neural differentiation‐related proteins in neural stem cells in vitro. In vivo, in the rat calvarial bone defect mode, the GelMA/GeP@Cu hydrogel is found to enhance angiogenesis and neurogenesis, eventually contributing to bone regeneration. These findings indicate that in the field of bone tissue engineering, GelMA/GeP@Cu can serve as a valuable biomaterial for neuro‐vascularized bone regeneration and infection prevention.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3