Material‐Intrinsic NIR‐Fluorescence Enables Image‐Guided Surgery for Ceramic Fracture Removal

Author:

Nißler Robert123ORCID,Totter Elena1,Walter Sebastian G.4ORCID,Metternich Justus T.56ORCID,Cipolato Oscar123ORCID,Nowack Dimitri7,Gogos Alexander12ORCID,Herrmann Inge K.123ORCID

Affiliation:

1. Nanoparticle Systems Engineering Laboratory Institute of Energy and Process Engineering (IEPE) Department of Mechanical and Process Engineering (D‐MAVT) ETH Zurich Sonneggstrasse 3 Zurich 8092 Switzerland

2. Particles‐Biology Interactions Department of Materials Meet Life Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland

3. The Ingenuity Lab University Hospital Balgrist University of Zurich Forchstrasse 340 Zurich 8008 Switzerland

4. Department of Orthopedics Traumatology and Reconstructive Surgery University Hospital Cologne Joseph‐Stelzmann‐Str. 24 50931 Cologne Germany

5. Physical Chemistry Ruhr‐University Bochum Universitätsstr. 150 44801 Bochum Germany

6. Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) Finkenstr. 61 47057 Duisburg Germany

7. Deutsches Zentrum für Orthopädie Department of Orthopedics and Trauma Surgery Friedrich Schiller University Jena Eisenberg 07743 Jena Germany

Abstract

AbstractHip arthroplasty effectively treats advanced osteoarthritis and is therefore entitled as “operation of the 20th century.” With demographic shifts, the USA alone is projected to perform up to 850 000 arthroplasties annually by 2030. Many implants now feature a ceramic head, valued for strength and wear resistance. Nonetheless, a fraction, up to 0.03% may fracture during their lifespan, demanding complex removal procedures. To address this, a radiation‐free, fluorescence‐based image‐guided surgical technique is presented. The method uses the inherent fluorescence of ceramic implant materials, demonstrated through chemical and optical analysis of prevalent implant types. Specifically, Biolox delta implants exhibited strong fluorescence around 700 nm with a 74% photoluminescence quantum yield. Emission tails are identified extending into the near‐infrared (NIR‐I) biological transparency range, forming a vital prerequisite for the label‐free visualization of fragments. This ruby‐like fluorescence could be attributed to Cr within the zirconia‐toughened alumina matrix, enabling the detection of even deep‐seated millimeter‐sized fragments via camera‐assisted techniques. Additionally, fluorescence microscopy allowed detection of µm‐sized ceramic particles, enabling debris visualization in synovial fluid as well as histological samples. This label‐free optical imaging approach employs readily accessible equipment and can seamlessly transition to clinical settings without significant regulatory barriers, thereby enhancing the safety, efficiency, and minimally invasive nature of fractured ceramic implant removal procedures.

Funder

ETH Zürich Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3