In Situ Enzymatic Reaction Generates Magnesium‐Based Mineralized Microspheres with Superior Bioactivity for Enhanced Bone Regeneration

Author:

Cai Zhuyun1ORCID,Liu Xiaohao2,Hu Miao1,Meng Yichen1,Zhao Jianquan1,Tan Yixuan1,Luo Xiong2,Wang Ce1,Ma Jun13,Sun Zhongyi2,Jiang Yingying4,Lu Bingqiang2,Gao Rui1,Chen Feng2,Zhou Xuhui13ORCID

Affiliation:

1. Department of Orthopedics Second Affiliated Hospital Naval Medical University Shanghai 200003 P. R. China

2. Center for Orthopedic Science and Translational Medicine Department of Orthopedics Shanghai Tenth People's Hospital School of Medicine Tongji University Shanghai 200072 P. R. China

3. Translational Research Center of Orthopedics Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200080 P. R. China

4. Musculoskeletal Organoid Research Center Institute of Translational Medicine Shanghai University Shanghai 200444 P. R. China

Abstract

AbstractBone is a naturally mineralized tissue with a remarkable hierarchical structure, and the treatment of bone defects remains challenging. Microspheres with facile features of controllable size, diverse morphologies, and specific functions display amazing potentials for bone regeneration. Herein, inspired by natural biomineralization, a novel enzyme‐catalyzed reaction is reported to prepare magnesium‐based mineralized microspheres. First, silk fibroin methacryloyl (SilMA) microspheres are prepared using a combination of microfluidics and photo‐crosslinking. Then, the alkaline phosphatase (ALP)‐catalyzed hydrolysis of adenosine triphosphate (ATP) is successfully used to induce the formation of spherical magnesium phosphate (MgP) in the SilMA microspheres. These SilMA@MgP microspheres display uniform size, rough surface structure, good degradability, and sustained Mg2+ release properties. Moreover, the in vitro studies demonstrate the high bioactivities of SilMA@MgP microspehres in promoting the proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Transcriptomic analysis shows that the osteoinductivity of SilMA@MgP microspheres may be related to the activation of the PI3K/Akt signaling pathway. Finally, the bone regeneration enhancement units (BREUs) are designed and constructed by inoculating BMSCs onto SilMA@MgP microspheres. In summary, this study demonstrates a new biomineralization strategy for designing biomimetic bone repair materials with defined structures and combination functions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3