Supramolecular Fibrous Hydrogel Augmentation of Uterosacral Ligament Suspension for Treatment of Pelvic Organ Prolapse

Author:

Miller Beverly1,Wolfe Wiley2,Gentry James L.3,Grewal M. Gregory1,Highley Christopher B.13,De Vita Raffaella4,Vaughan Monique H.5,Caliari Steven R.13ORCID

Affiliation:

1. Department of Chemical Engineering University of Virginia Charlottesville VA 22903 USA

2. Scripps Institution of Oceanography University of California San Diego La Jolla CA 92 093 USA

3. Department of Biomedical Engineering University of Virginia Charlottesville VA 22 903 USA

4. Stretch Lab Department of Biomedical Engineering and Mechanics Virginia Tech Blacksburg VA 24 061 USA

5. Department of Obstetrics and Gynecology University of Virginia Charlottesville VA 22 903 USA

Abstract

AbstractUterosacral ligament suspension (USLS) is a common surgical treatment for pelvic organ prolapse (POP). However, the relatively high failure rate of up to 40% underscores a strong clinical need for complementary treatment strategies, such as biomaterial augmentation. Herein, the first hydrogel biomaterial augmentation of USLS in a recently established rat model is described using an injectable fibrous hydrogel composite. Supramolecularly‐assembled hyaluronic acid (HA) hydrogel nanofibers encapsulated in a matrix metalloproteinase (MMP)‐degradable HA hydrogel create an injectable scaffold showing excellent biocompatibility and hemocompatibility. The hydrogel can be successfully delivered and localized to the suture sites of the USLS procedure, where it gradually degrades over six weeks. In situ mechanical testing 24 weeks post‐operative in the multiparous USLS rat model shows the ultimate load (load at failure) to be 1.70 ± 0.36 N for the intact uterosacral ligament (USL), 0.89 ± 0.28 N for the USLS repair, and 1.37 ± 0.31 N for the USLS + hydrogel (USLS+H) repair (n = 8). These results indicate that the hydrogel composite significantly improves load required for tissue failure compared to the standard USLS, even after the hydrogel degrades, and that this hydrogel‐based approach can potentially reduce the high failure rate associated with USLS procedures.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3