E‐Suture: Mixed‐Conducting Suture for Medical Devices

Author:

Rauhala Onni J.1,Ma Liang2,Wisniewski Duncan J.1,Shao Shan3,Schumacher Brandon3,Lopez Jose Ferrero3,Kaspers Mara2,Zhao Zifang1,Gelinas Jennifer N.23,Khodagholy Dion1ORCID

Affiliation:

1. Department of Electrical Engineering Columbia University New York 10027 USA

2. Department of Biomedical Engineering Columbia University New York 10027 USA

3. Department of Neurology Columbia University Irving Medical Center New York 10032 USA

Abstract

AbstractModern implantable bioelectronics demand soft, biocompatible components that make robust, low‐impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed‐conducting suture, the e‐suture, is presented. Composed of silk, the conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e‐suture has mixed‐conducting properties at the interface with biological tissue as well as effective insulation along its length. The e‐suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e‐sutures remains stable for months with robust brain activity patterns. Furthermore, e‐sutures can establish electrophoretic‐based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E‐sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3