Relationship between dry matter accumulation and maize yield in Southwest China

Author:

Dong Xixi1ORCID,Ren Yun1,Shi Lin1,Bao Shuqin1,Chai Xingying12,Li Qiang1,Liao Linzheng1

Affiliation:

1. College of Smart Agriculture /Institute of Special Plants Chongqing University of Arts and Sciences Chongqing China

2. College of Biology and Food Engineering Chongqing Three Gorges University Chongqing China

Abstract

AbstractTo explore the differences in dry matter accumulation and yield of maize varieties having different nitrogen‐use efficiencies in Southwest China, a field experiment was conducted in Yongchuan, Chongqing, and Deyang, Sichuan, from 2019 to 2020. Two varieties, the nitrogen‐efficient Zhenghong 311 (ZH 311) and the nitrogen‐inefficient Xianyu 508 (XY 508), were tested across four nitrogen levels (0–360 kg ha−1). The results showed that compared to XY 508, ZH 311 exhibited a significantly higher accumulation of dry matter at various stages and periods, particularly in the roots during the R6 stage, and in the stem sheaths and leaves throughout all stages. Furthermore, the number of kernel rows, number of kernels per row, number of kernels per ear, and grain yield were significantly higher for ZH 311 than XY 508, whereas the 100‐grain weight was significantly lower for ZH 311 than XY 508. The yield difference between the two varieties was the largest when the nitrogen application rate was 240 kg ha−1. The yield performance of ZH 311 was always better than that of XY 508, and less nitrogen was needed to obtain the best yield. The accumulation of maize dry matter had a highly significant effect on the number of kernel rows, kernels per row, and kernels per ear, and grain yield. The direct effect of the number of kernels per ear on grain yield was very low. However, it affected grain yield through the number of kernel rows and kernels per row. The dry matter accumulation of V6−V12 and R3−R6 contributed the most to grain yield, while in vegetative organs, the effect of leaf dry matter accumulation and yield was the greatest. This investigation will provide insights into factors affecting variations in maize yield under low nitrogen conditions and offer guidance for N‐fertilizer management strategies.

Funder

Natural Science Foundation of Chongqing Municipality

Publisher

Wiley

Reference42 articles.

1. Fresh maize yield in response to nitrogen application rates and characteristics of nitrogen-efficient varieties

2. Maize reproductive development and kernel set under limited plant growth environments

3. Effects of nitrogen fertilizer on the yield, dry matter and nitrogen accumulation of maize inbred lines with different nitrogen use efficiency types;Chang X.;Soil and Fertilizer Sciences in China,2021

4. Vegetative growth and photosynthetic characteristics of maize hybrids differing in nitrogen use efficiency;Chen F. J.;Journal of Maize Sciences,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3