Soil water content estimation by using ground penetrating radar data full waveform inversion with grey wolf optimizer algorithm

Author:

Zhang M. H.12ORCID,Feng X.1,Bano M.2,Liu C.1,Liu Q.3,Wang X.1

Affiliation:

1. College of Geo‐Exploration Science and Technology Jilin University Changchun China

2. ITES UMR‐7063, EOST University of Strasbourg Strasbourg France

3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan China

Abstract

AbstractSoil water content (SWC) estimation is important for many areas including hydrology, agriculture, soil science, and environmental science. Ground penetrating radar (GPR) is a promising geophysical method for SWC estimation. However, at present, most of the studies are based on partial information of GPR, like travel time or amplitude information, to invert the SWC. Full waveform inversion (FWI) can use the information of the entire waveform, which can improve the accuracy of parameter estimation. This study proposes a novel SWC estimation scheme by using the FWI of GPR, optimized by the grey wolf optimizer (GWO) algorithm. The proposed scheme includes a petrophysical relationship to link the SWC with the relative dielectric permittivity, 1D GPR forward modeling, and a GWO optimization algorithm. First, numerical modeling was carried out, and the proposed scheme was applied to both noise‐free and noisy data to verify its applicability. Then, the proposed method was applied to data collected from a field experimental site. These results, derived from both synthetic and real datasets, show that the proposed inversion scheme resulted in a good match between the observed and calculated GPR data. In the numerical modeling, it was observed that the SWC could be inverted accurately, even when noise was present in the data. These demonstrate that the GWO method can be applied for the quantitative interpretation of GPR data. The proposed scheme shows potential for SWC estimation by using GPR full waveform data.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3