“Super‐covariates”: Using predicted control group outcome as a covariate in randomized clinical trials

Author:

Holzhauer Björn1ORCID,Adewuyi Emmanuel Taiwo2ORCID

Affiliation:

1. Analytics Novartis Pharma AG Basel Switzerland

2. Department of Statistics Ladoke Akintola University of Technology Ogbomoso Nigeria

Abstract

AbstractThe power of randomized controlled clinical trials to demonstrate the efficacy of a drug compared with a control group depends not just on how efficacious the drug is, but also on the variation in patients' outcomes. Adjusting for prognostic covariates during trial analysis can reduce this variation. For this reason, the primary statistical analysis of a clinical trial is often based on regression models that besides terms for treatment and some further terms (e.g., stratification factors used in the randomization scheme of the trial) also includes a baseline (pre‐treatment) assessment of the primary outcome. We suggest to include a “super‐covariate”—that is, a patient‐specific prediction of the control group outcome—as a further covariate (but not as an offset). We train a prognostic model or ensembles of such models on the individual patient (or aggregate) data of other studies in similar patients, but not the new trial under analysis. This has the potential to use historical data to increase the power of clinical trials and avoids the concern of type I error inflation with Bayesian approaches, but in contrast to them has a greater benefit for larger sample sizes. It is important for prognostic models behind “super‐covariates” to generalize well across different patient populations in order to similarly reduce unexplained variability whether the trial(s) to develop the model are identical to the new trial or not. In an example in neovascular age‐related macular degeneration we saw efficiency gains from the use of a “super‐covariate”.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3