Geographic object‐based image analysis (GEOBIA) of the distribution and characteristics of aeolian sand dunes in Arctic Sweden

Author:

Stammler Melanie1ORCID,Stevens Thomas2ORCID,Hölbling Daniel3ORCID

Affiliation:

1. Department of Geography University of Bonn Bonn Germany

2. Department of Earth Sciences Uppsala University Uppsala Sweden

3. Department of Geoinformatics – Z_GIS University of Salzburg Salzburg Austria

Abstract

AbstractCurrent climate change in the Arctic is unprecedented in the instrumental record, with profound consequences for the environment and landscape. In Arctic Sweden, aeolian sand dunes have been impacted by climatic changes since their initial formation after the retreat of the last glacial ice sheet. Dune type, location and orientation can therefore be used to explore past wind patterns and landscape destabilisation in this sensitive area. However, knowledge of the full spatial extent and characteristics of these dunes is limited by their inaccessibility and dense vegetation cover. Geographic object‐based image analysis (GEOBIA) permits the semi‐automatic creation of reproducible parameter‐based objects and can be an appropriate means to systematically and spatially map these dunes remotely. Here, a digital elevation model (DEM) and its derivatives, such as slope and curvature, were segmented in a GEOBIA context, enabling the identification and mapping of aeolian sand dunes in Arctic Sweden. Analysis of the GEOBIA‐derived and expert‐accepted polygons affirms the prevalence of parabolic dune type and reveals the coexistence of simple dunes with large coalesced systems. Furthermore, mapped dune orientations and relationships to other geomorphological features were used to explore past wind directions and to identify sediment sources as well as the reasons for sand availability. The results indicate that most dune systems in Arctic Sweden were initially supplied by glaciofluvial and fluvial disturbances of sandy esker systems. Topographic control of wind direction is the dominant influence on dune orientation. Further, our approach shows that analysing the GEOBIA‐derived dune objects in their geomorphological context paves the way for successfully investigating aeolian sand dune location, type and orientation in Arctic Sweden, thereby facilitating the understanding of post‐glacial landscape (in)stability and evolution in the area.

Funder

Göran Gustafssons Stiftelse för Naturvetenskaplig och Medicinsk Forskning

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3