Affiliation:
1. Department of Chemistry School of Natural Sciences Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
2. WACKER-Chair of Macromolecular Chemistry Catalysis Research Center Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
Abstract
AbstractComplex coacervation describes the liquid‐liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post‐translational modifications. They are also a great protocell model or could be used to synthesize life–they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets′ life cycle without influencing the chemical reaction cycle–either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.
Funder
Deutsche Forschungsgemeinschaft
H2020 European Research Council
Fonds der Chemischen Industrie
Subject
General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献