Carbon‐Based Electron Buffer Layer on ZnOx−Fe5C2−Fe3O4 Boosts Ethanol Synthesis from CO2 Hydrogenation

Author:

Wang Yang12,Wang Wenhang2,He Ruosong1,Li Meng1,Zhang Jinqiang3,Cao Fengliang1,Liu Jianxin1,Lin Shiyuan1,Gao Xinhua4,Yang Guohui25,Wang Mingqing6,Xing Tao6,Liu Tao6,Liu Qiang6,Hu Han1,Tsubaki Noritatsu2,Wu Mingbo1ORCID

Affiliation:

1. College of New Energy, State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China) Qingdao 266580 China

2. Department of Applied Chemistry, School of Engineering University of Toyama, Gofuku 3190 Toyama 930-8555 Japan

3. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

4. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering Ningxia University Yinchuan 750021 China

5. State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China

6. National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials Shandong Energy Group Co., Ltd. Jinan 250014 China

Abstract

AbstractThe conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron‐transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron‐transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co‐feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3