Structural Elucidation of a Metagenomic Urethanase and Its Engineering Towards Enhanced Hydrolysis Profiles

Author:

Bayer Thomas1ORCID,Palm Gottfried J.2ORCID,Berndt Leona2ORCID,Meinert Hannes1ORCID,Branson Yannick1ORCID,Schmidt Louis3ORCID,Cziegler Clemens1ORCID,Somvilla Ina1,Zurr Celine1ORCID,Graf Leonie G.2,Janke Una4,Badenhorst Christoffel P. S.1ORCID,König Stefanie3ORCID,Delcea Mihaela4,Garscha Ulrike3ORCID,Wei Ren1ORCID,Lammers Michael2ORCID,Bornscheuer Uwe T.1ORCID

Affiliation:

1. Department of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany

2. Department of Synthetic & Structural Biochemistry Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany

3. Department of Pharmaceutical & Medicinal Chemistry Institute of Pharmacy University of Greifswald Friedrich-Ludwig-Jahn-Str. 17 17489 Greifswald Germany

4. Department of Biophysical Chemistry Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany

Abstract

AbstractWhile plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG‐SP‐1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site‐saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3‐ and 8‐fold improved activity against highly stable N‐aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester‐PU and a PA (nylon 6) by the activity of a single, metagenome‐derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG‐SP‐1 beyond the reported low‐molecular weight carbamates. Together, these findings promise advanced strategies for the bio‐based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Reference80 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3