Ultralong‐Cycling Lithium Storage of SrGe2O4S Anode Enabled by In Situ Formed Oxysulfide Matrix

Author:

Dong Chenlong12ORCID,Wang Ruiqi32,Zhang Yuanxia1,Fu Qiang2,Zhao Siwei2,Li Guobao2,Mao Zhiyong1,Huang Fuqiang245ORCID

Affiliation:

1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 P.R. China

2. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P.R. China

3. School of Chemical Engineering University of Chinese Academy of Sciences Beijing 101408 P.R. China

4. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China

5. Inner Mongolia Research Institute Shanghai Jiao Tong University Hohhot 010010 P.R. China

Abstract

AbstractHigh‐energy lithium‐ion batteries (LIBs) demand next‐generation alloying‐type anodes with high capacity and low voltage. While silicon‐based anodes are in industrial use, commercial alloying‐type anodes still suffer from excessive volume expansion and inadequate cycle life. Even incorporating silicon‐carbon composites within graphite (typically <20% in commercial products) fails to resolve these limitations. Herein, we report a novel SrGe2O4S anode for ultralong‐cycling lithium storage. An oxysulfide matrix (Li₂O/SrS) was in situ formed around Ge nanodomains. Enabled by the strong covalency of soft S2⁻ anions and the pinning effect of large Sr2⁺ ions, this synergistic matrix has demonstrated capabilities to enhance interfacial compatibility with Ge, facilitate efficient Li⁺ transport, suppress agglomeration of Ge nanoparticles and buffer volume expansion, as evidenced by in/ex situ characterizations, density functional theory calculations, and finite element analysis simulations. The anode harvests a low charging medium voltage of 0.42 V and reversible capacity of 587 mA h g−1 at 0.1 A g−1 after 800 cycles (8300 h) with 93.2% capacity retention. The LiCoO2||SrGe2O4S full cell delivers a high capacity of 142 mA h g−1 and energy density of 482 Wh kg−1. This work sheds light on constructing functional matrix to relieve volume expansion and particle agglomeration of high‐capacity ultralong‐cycling alloying‐type anodes.

Funder

National Natural Science Foundation of China

Beijing National Laboratory for Molecular Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3