Facilitating the Electrochemical Oxidation of ZnS through Iodide Catalysis for Aqueous Zinc‐Sulfur Batteries

Author:

Hei Peng1,Sai Ya1,Liu Chang1,Li Wenjie1,Wang Jing2,Sun Xiaoqi13,Song Yu13ORCID,Liu Xiao‐Xia134

Affiliation:

1. Department of Chemistry Northeastern University 3-11, Wenhua Road, Heping district Shenyang 110819 China

2. State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao 066004 China

3. National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University 3-11, Wenhua Road, Heping district Shenyang 110819 China

4. Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University) Ministry of Education 3-11, Wenhua Road, Heping district Shenyang 110819 China

Abstract

AbstractAqueous zinc‐sulfur (Zn‐S) batteries show great potential for unlocking high energy and safety aqueous batteries. Yet, the sluggish kinetic and poor redox reversibility of the sulfur conversion reaction in aqueous solution challenge the development of Zn‐S batteries. Here, we fabricate a high‐performance Zn‐S battery using highly water‐soluble ZnI2 as an effective catalyst. In situ experimental characterizations and theoretical calculations reveal that the strong interaction between I and the ZnS nanoparticles (discharge product) leads to the atomic rearrangement of ZnS, weakening the Zn‐S bonding, and thus facilitating the electrochemical oxidation reaction of ZnS to S. The aqueous Zn‐S battery exhibited a high energy density of 742 Wh kg(sulfur)−1 at the power density of 210.8 W kg(sulfur)−1 and good cycling stability over 550 cycles. Our findings provide new insights about the iodide catalytic effect for cathode conversion reaction in Zn‐S batteries, which is conducive to promoting the future development of high‐performance aqueous batteries.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Liaoning Province

Hebei Provincial Department of Human Resources and Social Security

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3