Oxygen‐Vacancy‐Engineered W18O49−x Nanobrush with a Suitable Band Structure for Highly Efficient Sonodynamic Therapy

Author:

Zheng Pan12,Ami'erjiang Yijiati1,Liu Bin1,Wang Meifang2,Ding He1,Ding Binbin2ORCID,Lin Jun23ORCID

Affiliation:

1. Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China

2. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

3. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China

Abstract

AbstractWith the rapid development of external minimally invasive or noninvasive therapeutic modalities, ultrasound‐based sonodynamic therapy (SDT) is a new alternative for treating deep tumors. However, inadequate sonosensitizer efficiency and poor biosecurity limit clinical applications. In this study, we prepared an oxygen‐vacancy‐engineered W18O49−x nanobrush with a band gap of 2.79 eV for highly efficient SDT using a simple solvothermal method. The suitable band structures of the W18O49−x nanobrush endows it with the potential to simultaneously produce singlet oxygen (1O2), superoxide anions (⋅O2), and hydroxyl radicals (⋅OH) under ultrasound irradiation. Additionally, abundant oxygen vacancies that serve as further charge traps that inhibit electron‐hole recombination are incidentally introduced through one‐step thermal reduction. Collectively, the in vitro and in vivo results demonstrate that the oxygen‐vacancy‐engineered W18O49−x nanobrush delivers highly efficient reactive oxygen species (ROS) for SDT in a very biosafe manner. Overall, this study provides a new avenue for discovering and designing inorganic nanosonosensitizers with enhanced therapeutic efficiencies for use in SDT.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3