Engineering Nucleotidoproteins for Base‐Pairing‐Assisted Cytosolic Delivery and Genome Editing

Author:

Liu Xun12,Zhao Ziyin1,Li Wei1,Li Yajie1,Yang Qiang1,Liu Ningyu1,Chen Yongbing2,Yin Lichen1ORCID

Affiliation:

1. Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou Jiangsu China

2. Department of Thoracic Cancer The Second Affiliated Hospital of Soochow University 215123 Suzhou Jiangsu China

Abstract

AbstractProtein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super‐negatively charged, nucleotide‐enriched structure of nucleic acids, adenylated pro‐proteins (A‐proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine‐modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A‐proteins to form salt‐resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A‐proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR‐Cas9 ribonucleoproteins targeting fusion oncogene EWSR1‐FLI1, leading to pronounced anti‐tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3