Atomically Local Electric Field Induced Interface Water Reorientation for Alkaline Hydrogen Evolution Reaction

Author:

Cai Chao1,Liu Kang1,Zhang Long1,Li Fangbiao1,Tan Yao1,Li Pengcheng1,Wang Yanqiu2,Wang Maoyu34,Feng Zhenxing3,Motta Meira Debora4,Qu Wenqiang5,Stefancu Andrei6,Li Wenzhang2,Li Hongmei16,Fu Junwei1,Wang Hui1,Zhang Dengsong5ORCID,Cortés Emiliano6ORCID,Liu Min1ORCID

Affiliation:

1. Hunan Joint International Research Center for Carbon Dioxide Resource Utilization School of Physics and Electronics Central South University Changsha 410083 Hunan P. R. China

2. School of Chemistry and Chemical Engineering Central South University Changsha 410083 Hunan P. R. China

3. School of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR 97331 USA

4. X-ray Science Division Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA

5. International Joint Laboratory of Catalytic Chemistry Department of Chemistry Research Center of Nanoscience and Technology College of Sciences Shanghai University Shanghai 200444 P. R. China

6. Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Germany

Abstract

AbstractThe slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H2O is well known to affect the dissociation process, but H2O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single‐atom sites (IrRu DSACs) to tune the H2O adsorption configuration and orientation, thus optimizing its dissociation process. The electric field intensity of IrRu DSACs is over 4.00×1010 N/C. The ab initio molecular dynamics simulations combined with in situ Raman spectroscopy analysis on the adsorption behavior of H2O show that the M−H bond length (M=active site) is shortened at the interface due to the strong local electric field gradient and the optimized water orientation promotes the dissociation process of interfacial water. This work provides a new way to explore the role of single atomic sites in alkaline hydrogen evolution reaction.

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3