Tuning Shortwave‐Infrared J‐aggregates of Aromatic Ring‐Fused Aza‐BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power

Author:

Guo Xing1ORCID,Sheng Wanle1,Pan Hongfei2,Guo Luying1,Zuo Huiquan1,Wu Zeyu3,Ling Shizhang3,Jiang Xiaochun3,Chen Zhijian2,Jiao Lijuan1,Hao Erhong1ORCID

Affiliation:

1. Laboratory of Functionalized Molecular Solids Ministry of Education Institution Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241002 China

2. School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin University Tianjin 300072 China

3. The Translational Research Institute for Neurological Disorders Department of Neurosurgery The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) Wuhu 241001 China

Abstract

AbstractAchieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo‐damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near‐infrared (NIR) absorptivity. J‐aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J‐aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J‐aggregation (λabsmax: 968 nm, ϵ: 2.96×105 M−1 cm−1, λemmax: 972 nm, ΦFL: 6.2 %) by tuning electrostatic interactions between π‐conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring‐fused aza‐BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F‐127 polymer, we were able to selectively generate H‐/J‐aggregates, respectively. Furthermore, the J‐aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave‐infrared J‐aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice‐tumors at an ultralow power density of 0.27 W cm−2 (915 nm). This phototherapeutic nano‐platform, which generates predictable J‐aggregation behavior, and can controllably form J‐/H‐aggregates and selectable J‐aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor‐treatment at ultralow laser power density.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3