Enable the Domino‐Like Structural Recovering in Bismuth Anode to Achieve Fast and Durable Na/K Storages

Author:

Long Hongli1,Wang Jing2,Zhao Shengyu1,Zou Bobo3,Yan Liuming1,Huang Qiuan1,Zhao Yufeng1ORCID

Affiliation:

1. College of Science & Institute for Sustainable Energy Shanghai University Shanghai 200444 China

2. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Yanshan University Qinhuangdao 066004 China

3. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 Sichuan China.

Abstract

AbstractAlloying‐type anodes show capacity and density advantages for sodium/potassium‐ion batteries (SIBs/PIBs), but they encounter serious structural degradation upon cycling, which cannot be resolved through conventional nanostructuring techniques. Herein, we present an in‐depth study to reveal the intrinsic reason for the pulverization of bismuth (Bi) materials upon (de)alloying, and report a novel particle‐in‐bulk architecture with Bi nanospheres inlaid in the bulk carbon (BiNC) to achieve durable Na/K storage. We simulate the volume‐expansion‐resistant mechanism of Bi during the (de)alloying reaction, and unveil that the irreversible phase transition upon (de)alloying underlies the fundamental origin for the structural degradation of Bi anode, while a proper compressive stress (~10 %) raised by the bulk carbon can trigger a “domino‐like” Bi crystal recovering. Consequently, the as obtained BiNC exhibits a record high volumetric capacity (823.1 mAh cm−3 for SIBs, 848.1 mAh cm−3 for PIBs) and initial coulombic efficiency (95.3 % for SIBs, 96.4 % for PIBs), and unprecedented cycling stability (15000 cycles for SIBs with only 0.0015 % degradation per cycle), outperforming the state‐of‐the‐art literature. This work provides new insights on the undesirable structural evolution, and proposes basic guidelines for design of the anti‐degradation structure for alloy‐type electrode materials.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Natural Science Foundation of Yichang Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3