Liver‐tumor mimics as a potential translational framework for planning and testing irreversible electroporation with multiple electrodes

Author:

Vera‐Tizatl Adriana Leticia1ORCID,van der Hee Regine2,Cornelissen Jeroen2,Vera‐Tizatl Claudia Elizabeth3,Abayazid Momen1,Fütterer Jurgen J.14

Affiliation:

1. Department of Electrical Engineering, Mathematics and Computer Sciences University of Twente Enschede The Netherlands

2. Department of Medical Imaging, Faculty of Sciences and Technology, Biomolecular NanoTechnology Group University of Twente Enschede The Netherlands

3. Department of Infectomics and Molecular Pathogenesis Center for Research and Advanced Studies of the National Polytechnic Institute Mexico City Mexico

4. Department of Medical Imaging Radboudumc Nijmegen The Netherlands

Abstract

AbstractIrreversible electroporation (IRE) has emerged as an appealing non‐ionizing, non‐thermal ablation therapy, independent of antineoplastic drugs. Limited but successful outcomes in IRE conducted in vivo, in small focal hepatocellular carcinomas (HCC), have been reported. Nonetheless, the electric parameters of IRE are usually delivered in an unplanned manner. This work investigates the integration of computational modeling to hydrogels mimicking the HCC microenvironment, as a powerful framework to: circumvent ethical concerns of in vivo experimentation; safely tune the electric parameters reaching the IRE electric field threshold; and propel the translation of IRE as a routine clinical alternative to the treatment of HCC. Therefore, a parametric study served to evaluate the effects of the pulse amplitude, the number of pulses and electrodes, the treatment time, the hydrogel–tumor size, and the cell type. The ablation extent was surveyed by confocal microscopy and magnetic resonance imaging (MRI) in cylindrical and realistic tumor‐shaped hydrogels, respectively. A large ablation (70%–100%) was verified in all constructs.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3