In situ light‐activated materials for skin wound healing and repair: A narrative review

Author:

Yaron Jordan R.12ORCID,Gosangi Mallikarjun1ORCID,Pallod Shubham1ORCID,Rege Kaushal123ORCID

Affiliation:

1. Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University Tempe Arizona USA

2. School for Engineering of Matter, Transport, and Energy, Ira A. Fulton Schools of Engineering, Arizona State University Tempe Arizona USA

3. Chemical Engineering, Arizona State University Tempe Arizona USA

Abstract

AbstractDermal wounds are a major global health burden made worse by common comorbidities such as diabetes and infection. Appropriate wound closure relies on a highly coordinated series of cellular events, ultimately bridging tissue gaps and regenerating normal physiological structures. Wound dressings are an important component of wound care management, providing a barrier against external insults while preserving the active reparative processes underway within the wound bed. The development of wound dressings with biomaterial constituents has become an attractive design strategy due to the varied functions intrinsic in biological polymers, such as cell instructiveness, growth factor binding, antimicrobial properties, and tissue integration. Using photosensitive agents to generate crosslinked or photopolymerized dressings in situ provides an opportunity to develop dressings rapidly within the wound bed, facilitating robust adhesion to the wound bed for greater barrier protection and adaptation to irregular wound shapes. Despite the popularity of this fabrication approach, relatively few experimental wound dressings have undergone preclinical translation into animal models, limiting the overall integrity of assessing their potential as effective wound dressings. Here, we provide an up‐to‐date narrative review of reported photoinitiator‐ and wavelength‐guided design strategies for in situ light activation of biomaterial dressings that have been evaluated in preclinical wound healing models.

Funder

Division of Materials Research

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of Biomedical Imaging and Bioengineering

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3