In situ‐crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention

Author:

Jasiewicz Natalie E.1,Mei Kuo‐Ching1ORCID,Oh Hannah M.1,Bonacquisti Emily E.1,Chaudhari Ameya1,Byrum Camryn1,Jensen Brian C.23,Nguyen Juliane1ORCID

Affiliation:

1. Division of Pharmacoengineering and Molecular Pharmaceutics Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA

2. McAllister Heart Institute, University of North Carolina Chapel Hill North Carolina USA

3. Division of Cardiology, Department of Medicine University of North Carolina Chapel Hill North Carolina USA

Abstract

AbstractMesenchymal stem cell (MSC)‐derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction (MI), but their therapeutic efficacy is limited by inefficient accumulation at the target site. A minimally invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post‐infarct cardiac regeneration. Here, we show that EVs decorated with the next‐generation of high‐affinity (HiA) heterodimerizing leucine zippers, termed HiA Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ~7‐fold enhanced accumulation within the infarcted myocardium in mice after 3 days and continued to be retained up to Day 21, surpassing the performance of unmodified EVs. After MI in mice, HiA Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and phosphate‐buffered saline (PBS), respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. HiA Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for minimally invasive vesicle delivery to the infarcted heart compared to intramyocardial injections.

Funder

National Institutes of Health

National Science Foundation

Pharmaceutical Research and Manufacturers of America Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3