Adaptively exploring the feature space of flowsheets

Author:

Höller Johannes1,Bubel Martin1ORCID,Heese Raoul1,Ludl Patrick Otto1,Schwartz Patrick1,Schwientek Jan1,Asprion Norbert2,Wlotzka Martin2,Bortz Michael1

Affiliation:

1. Optimization – Technical Processes Fraunhofer Institute for Industrial Mathematics (ITWM) Kaiserslautern Germany

2. Process Modeling & Cheminformatics – Fluid Process Modeling Chemical and Process Engineering, BASF SE Ludwigshafen Germany

Abstract

AbstractSimulation and optimization of chemical flowsheets rely on the solution of a large number of nonlinear equations. Finding such solutions can be supported by constructing machine learning‐based surrogate models, relating features and outputs by simple, explicit functions. In order to generate training data for those surrogate models computationally efficiently, schemes to adaptively sample the feature space are mandatory. In this article, we present a novel family of utility functions to favor an adaptive, Bayesian exploration of the feature space in order to identify regions that are convergent and fulfill customized inequality constraints. Moreover, points close to the Pareto‐optimal domain with respect to conflicting objectives can be identified, serving as good start values for a multicriteria optimization of the flowsheet. The benefit is illustrated by small toy‐examples as well as by industrially relevant chemical flowsheets.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3