Bond sensitive graph neural networks for predicting high temperature superconductors

Author:

Gu Liang12,Liu Yang12ORCID,Chen Pin3ORCID,Huang Haiyou12ORCID,Chen Ning4,Li Yang5ORCID,Lookman Turab16,Lu Yutong3,Su Yanjing12ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing China

2. Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing China

3. National Supercomputer Center in Guangzhou School of Computer Science and Engineering Sun Yat‐sen University Guangzhou China

4. School of Materials Science and Engineering University of Science and Technology Beijing Beijing China

5. Department of Engineering Science and Materials University of Puerto Rico Mayaguez Puerto Rico USA

6. AiMaterials Research LLC Santa Fe New Mexico USA

Abstract

AbstractFinding high temperature superconductors (HTS) has been a continuing challenge due to the difficulty in predicting the transition temperature (Tc) of superconductors. Recently, the efficiency of predicting Tc has been greatly improved via machine learning (ML). Unfortunately, prevailing ML models have not shown adequate generalization ability to find new HTS, yet. In this work, a graph neural network model is trained to predict the maximal Tc (Tcmax) of various materials. Our model reveals a close connection between Tcmax and chemical bonds. It suggests that shorter bond lengths are favored by high Tc, which is in coherence with previous domain knowledge. More importantly, it also indicates that chemical bonds consisting of some specific chemical elements are responsible for high Tc, which is new even to the human experts. It can provide a convenient guidance to the materials scientists in search of HTS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3