Highly aqueously stable C60‐polymer nanoparticles with excellent photodynamic property for potential cancer treatment

Author:

Wang Dan12,Zhao Jianyang2,Mulder Roger J.2,Ratcliffe Julian2,Wang Chunru3,Wu Bo3,Wang Jinquan12,Hao Xiaojuan245ORCID

Affiliation:

1. Guangdong Pharmaceutical University Guangzhou Guangdong China

2. Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria Australia

3. Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing China

4. Joint Research Centre on Medicine The Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo Zhejiang China

5. Zhejiang Engineering Research Centre for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China

Abstract

AbstractFullerenes are a class of carbon nanomaterials that find a wide range of applications in biomedical fields, especially for photodynamic cancer therapy because of its photosensitive effect. However, hydrophobic fullerenes can only be dispersed in organic solvents which hinders their biomedical applications. Here, we report a facile method to prepare highly water‐dispersible fullerene (C60)‐polymer nanoparticles with hydrodynamic sizes of 50–70 nm. Hydrophilic random copolymers containing different ratios of polyethylene glycol methyl ether methacrylate and 2‐aminoethylmethacrylamide were synthesized for conjugating with C60 molecules through efficient nucleophilic Michael addition reaction between amine groups from hydrophilic polymer and carbon‐carbon double bonds from C60. As a result, the amphiphilic C60‐polymer conjugates could be well dispersed and nano‐assembled in water with a C60 concentration as high as 7.8 mg/mL, demonstrating a significant improvement for the solubility of C60 in an aqueous system. Owing to the high C60 content, the C60‐polymer nanoparticles showed a strong photodynamic therapy effect on human lung cancer cells (A549) under light irradiation (450 nm) in both 2D cell culture and 3D spheroid culture, while demonstrating ignorable cytotoxicity under dark. This highly efficient and convenient method to prepare water‐dispersible C60‐polymer conjugates may have a great impact on the future biomedical applications of fullerenes.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3