Optimized quantitative mapping of cardiopulmonary oscillations using hyperpolarized 129Xe gas exchange MRI: Digital phantoms and clinical evaluation in CTEPH

Author:

Lu Junlan1ORCID,Alenezi Fawaz2,Bier Elianna3,Leewiwatwong Suphachart3,Mummy David4ORCID,Kabir Sakib4,Rajagopal Sudarshan2,Robertson Scott5,Niedbalski Peter J.6ORCID,Driehuys Bastiaan134

Affiliation:

1. Medical Physics Graduate Program Duke University Durham North Carolina USA

2. Division of Cardiology, Department of Medicine Duke University Medical Center Durham North Carolina USA

3. Biomedical Engineering Duke University Durham North Carolina USA

4. Radiology Duke University Medical Center Durham North Carolina USA

5. Clinical Imaging Physics Group Duke University Medical Center Durham North Carolina USA

6. Division of Pulmonary, Critical Care, and Sleep Medicine University of Kansas Medical Center Kansas City Kansas USA

Abstract

AbstractPurposeThe interaction between 129Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re‐establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE).MethodsA six‐zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One‐point Dixon 129Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE.ResultsFor undersampled acquisitions, a key radius of was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03).ConclusionsDigital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1‐point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.

Funder

American Heart Association

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3