The photon‐electrical conversion efficiency of dye‐sensitive solar cells fabricated using a highly conductive silver‐nanoparticle/titania photocathode

Author:

Daniel Likius S.12ORCID,Kaffer Rocha T.1,Kalipi Loini M.1,Rahman Ateeq1,Kalengay Mbela1,Uahengo Veikko1

Affiliation:

1. Department of Physics, Chemistry and Material Science University of Namibia Windhoek Namibia

2. Multidisciplinary Research Service, Centre for Research Services University of Namibia Windhoek Namibia

Abstract

AbstractThe TiO2 thin film, Ag NP and three Ag‐NP/TiO2 composite thin films (COMP‐Agn; n = 20, 50, and 75 Ag mol%) were successfully fabricated on quartz glass. The optical properties of the composite electrodes were investigated, and the results indicate a surface plasmonic resonance peak at 410 nm while the electrical resistivity of the composite thin films improved up to 6.9 × 105 Ω cm. The photo‐response threshold of the Ag‐NP/TiO2 composite thin films was enhanced and shifted into the visible and near‐infrared when the chlorophyll dye was adsorbed onto them. The hall effect was performed on the fabricated thin films and the charge carrier concentrate value confirmed that the Ag/TiO2 with Ag concentrate >45% are found to be p‐type. The n‐types were observed till the Ag content in TiO2 was increased up to 45 mol%. COMP‐Ag75 has a charge carrier concentration of 1.3 × 10−19 cm−3 as a p‐type electrode was then employed to construct a p‐DSSC. Such enhancement on photovoltaic activity can be attributed to the generated Z‐scheme system in the anatase/rutile phase‐junction Ag/TiO2 photocathode enhances the separation, diffusion, and transformation of electron/hole pairs inside the structure. This p‐DSSC exhibits a photon‐electrical conversion efficiency (PCE) of 0.37%. The PCE recorded is equal to or greater than those of traditional high‐efficiency n‐DSSCs. This allows the creation of a new generation of photocathodic p‐DSSCs with previously unheard‐of unprecedentedly high concentrations of Ag (up to 80 mol%) evenly scattered in a TiO2 matrix, and this efficacy is the highest ever reported for a p‐type working Ag/TiO2/chlorophyll/iodine electrode. This may enable the use of this electrode as a component of photosensitizer tandem devices.

Funder

National Commission on Research, Science and Technology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3