Affiliation:
1. Grupo de Física Nuclear, EMFTEL & IPARCOS Universidad Complutense de Madrid, CEI Moncloa Madrid Spain
2. Instituto de Investigación del Hospital Clínico San Carlos (IdISSC) Ciudad Universitaria Madrid Spain
3. Centro de Protonterapia Quironsalud Madrid Spain
Abstract
AbstractBackgroundRecent proposals of high dose rate plans in protontherapy as well as very short proton bunches may pose problems to current beam monitor systems. There is an increasing demand for real‐time proton beam monitoring with high temporal resolution, extended dynamic range and radiation hardness. Plastic scintillators coupled to optical fiber sensors have great potential in this context to become a practical solution towards clinical implementation.PurposeIn this work, we evaluate the capabilities of a very compact fast plastic scintillator with an optical fiber readout by a SiPM and electronics sensor which has been used to provide information on the time structure at the nanosecond level of a clinical proton beam.Materials and methodsA 3 × 3 × 3 mm3 plastic scintillator (EJ‐232Q Eljen Technology) coupled to a 3 × 3 mm2 SiPM (MicroFJ‐SMA‐30035, Onsemi) has been characterized with a 70 MeV clinical proton beam accelerated in a Proteus One synchrocyclotron. The signal was read out by a high sampling rate oscilloscope (5 GS/s). By exposing the sensor directly to the proton beam, the time beam profile of individual spots was recorded.ResultsMeasurements of detector signal have been obtained with a time sampling period of 0.8 ns. Proton bunch period (16 ns), spot (10 μs) and interspot (1 ms) time structures could be observed in the time profile of the detector signal amplitude. From this, the RF frequency of the accelerator has been extracted, which is found to be 64 MHz.ConclusionsThe proposed system was able to measure the fine time structure of a clinical proton accelerator online and with ns time resolution.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献