Kernel number and kernel weight stability can vary across corn hybrids

Author:

Kim Jinwook1,Sullivan Paul2,Caldwell Lindsey2,Downey Julia2,Hooker David C.3,Nasielski Joshua1ORCID

Affiliation:

1. Department of Plant Agriculture University of Guelph Guelph Ontario Canada

2. Sullivan Agro Consulting Kinburn Ontario Canada

3. Department of Plant Agriculture University of Guelph Ridgetown Ontario Canada

Abstract

AbstractThe stability of a trait refers to the extent to which its expression in a given genotype varies across environments. The more stable a trait, the less variable its expression. Grain yield stability is a central consideration in corn production to ensure that hybrids perform consistently across environments and is frequently quantified given its importance. Little attention has been paid to the stability of corn yield components, kernel number per m2 (KN), and kernel weight (KW). Our hypothesis is that while previous research suggests that yield stability of commercial corn hybrids is generally consistent, the stabilities of KN and KW may exhibit significant differences, even when overall yield stability remains constant. This study evaluated the yield and yield component stabilities of 23 commercial corn hybrids conducted on‐farm at five location‐years in Ontario, Canada, using Finlay–Wilkinson regression. Most (61%) hybrids exhibited average yield stability with β1‐values close to 1.0. But seven hybrids displaying average yield stability had KN and/or KW stabilities significantly different than average. While in absolute terms, KW was always more stable than KN across environments, the data indicate that hybrids have different mechanisms to achieve stable yields in terms of relative yield component adjustments. Overall, 14 hybrids had yield component β1‐values significantly more or less stable than average. The instances where yield component β1‐values differed significantly from 1.0 were almost equally divided between KN and KW. These findings support the potential for hybrid‐specific corn management, that is, tailoring management practices to take advantage of hybrid variation in yield component stabilities.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3