Reformulation of dicamba herbicide: Impacts on offsite transport and soybean damage

Author:

Hammer Caleb R.1ORCID,Griffis Timothy J.1,Baker John M.12,Rice Pamela J.12,Frankson Lara E.2,Gunsolus Jeffrey L.3,Erickson Matthew D.1,Xiao Ke1,Mistry Aarti P.1,Sarangi Debalin3

Affiliation:

1. Department of Soil, Water, and Climate University of Minnesota Saint Paul Minnesota USA

2. Soil and Water Management Research Unit USDA‐ARS Saint Paul Minnesota USA

3. Department of Agronomy and Plant Genetics University of Minnesota Saint Paul Minnesota USA

Abstract

AbstractThe herbicide dicamba (3,6‐dichloro‐2‐methoxybenzoic acid) is commonly used to control broadleaf weeds in soybeans. Dicamba, however, is susceptible to volatilization and drift, thereby causing significant plant damage to nontarget crops downwind. Dicamba was reformulated to reduce volatility and off‐target movement. The effectiveness of the dicamba reformulation was assessed by quantifying dicamba emissions following spray application and investigated how meteorological factors influenced the off‐target movement. The experiments were conducted at the University of Minnesota Agricultural Experiment Station (UMORE Park) during the growing season of 2018, 2019, 2021, and 2022. Multiple high‐flow polyurethane foam air samplers were used to measure dicamba concentrations downwind from a 4‐ha soybean field sprayed with dicamba. Dicamba emissions were estimated using backward Lagrangian modeling constrained by the air sample observations. The results indicate that dicamba emissions and downwind transport were significant for several days following application. Further, non‐traited soybeans located within 15–45 m showed substantial dicamba‐related damage. In warmer, drier seasons, increased dicamba emissions caused more severe damage to downwind soybeans, likely worsened by drought stress preventing recovery. Favorable atmospheric conditions that reduced potential drift can be difficult to achieve in terms of the typical weather experienced over agricultural sites in the Upper Midwest. These results indicate that the dicamba reformulation has not adequately prevented significant post‐spray volatilization losses and downwind transport.

Funder

Minnesota Department of Agriculture

Agricultural Research Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3