Interferon‐regulatory factor‐1 boosts bevacizumab cardiotoxicity by the vascular endothelial growth factor A/14‐3‐3γ axis

Author:

Chen Xuan‐Ying1,Xie Meng‐Qi2,Huang Wei‐Lin3,Li Wen‐Juan4,Lv Yan‐Ni1,Peng Xiao‐Ping3

Affiliation:

1. Department of Pharmacy The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang P. R. China

2. Department of Pharmacology, School of Pharmacy Nanchang University Nanchang P. R. China

3. Department of Cardiovascular The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang P. R. China

4. State Key Laboratory of Food Science and Technology Nanchang University Nanchang P. R. China

Abstract

AbstractAimMyocardial injury is a significant cause of death. This study investigated the role and underlying mechanism of interferon‐regulatory factor‐1 (IRF1) in bevacizumab (BVZ)‐induced cardiomyocyte injury.Methods and resultsHL‐1 cells and C57BL/6 mice receiving BVZ treatment were used to establish in vitro and in vivo models of myocardial injury. The relationship between VEGFA and 14‐3‐3γ was verified through co‐immunoprecipitation and Glutathione S Transferase (GST) pull‐down assay. Cell viability and apoptosis were analysed by MTT, propidium iodide (PI) staining and flow cytometry. The release of lactate dehydrogenase (LDH), cardiac troponins T (cTnT), and creatine kinase MB (CK‐MB) was measured using the enzyme linked immunosorbent assay. The effects of knocking down IRF1 on BVZ‐induced mice were analysed in vivo. IRF1 levels were increased in BVZ‐treated HL‐1 cells. BVZ treatment induced apoptosis, inhibited cell viability, and promoted the release of LDH, cTnT, and CK‐MB. IRF1 silencing suppressed BVZ‐induced myocardial injury, whereas IRF1 overexpression had the opposite effect. IRF1 regulated VEGFA expression by binding to its promoter, with the depletion of VEGFA or 14‐3‐3γ reversing the effects of IRF1 knockdown on the cell viability and apoptosis of BVZ‐treated HL‐1 cells. 14‐3‐3γ overexpression promoted cell proliferation, inhibited apoptosis, and reduced the release of LDH, cTnT, and CK‐MB, thereby alleviating BVZ‐induced HL‐1 cell damage. In vivo, IRF1 silencing alleviated BVZ‐induced cardiomyocyte injury by regulating the VEGFA/14‐3‐3γ axis.ConclusionThe IRF1‐mediated VEGFA/14‐3‐3γ signalling pathway promotes BVZ‐induced myocardial injury. Our study provides evidence for potentially new target genes for the treatment of myocardial injury.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3