Protective effect of secretory APE1/Ref‐1 on doxorubicin‐induced cardiotoxicity via suppression of ROS and p53 pathway

Author:

An Soo Yeon12,Jin Seon‐Ah13,Seo Hee Jeong3,Lee Yu Ran34,Kim Sungmin24,Jeon Byeong Hwa234,Jeong Jin‐Ok13

Affiliation:

1. Division of Cardiology, Department of Internal Medicine Chungnam National University Hospital, College of Medicine, Chungnam National University Daejeon Republic of Korea

2. Department of Medical Sciences, College of Medicine Chungnam National University Daejeon Republic of Korea

3. Research Institute for Medical Sciences, College of Medicine Chungnam National University Daejeon Republic of Korea

4. Department of Physiology, College of Medicine Chungnam National University Daejeon Republic of Korea

Abstract

AbstractAimsThe clinical application of doxorubicin (DOX), a potent anthracycline anticancer drug that effectively treats various malignancies, is limited by its side effects, such as cardiomyopathy. Apurinic/apyrimidinic endonuclease 1/redox factor‐1 (APE1/Ref‐1) is a multifunctional protein that can be secreted and is a promising target for the reduction of DOX‐induced inflammation and oxidative stress. We aimed to investigate the protective role of secretory APE1/Ref‐1 against DOX‐induced cardiac injury.Methods and resultsDesignated adenoviral preprotrypsin‐leading sequence APE1/Ref‐1 (Ad‐PPTLS‐APE1/Ref‐1) was used to overexpress secretory APE1/Ref‐1 and assess its role in preventing DOX‐induced cardiomyopathy in vitro. Our findings revealed that exposure to secretory APE1/Ref‐1 significantly decreased N‐terminal pro‐B‐type natriuretic peptide levels in DOX‐treated H9C2 cells. In addition, secretory APE1/Ref‐1 reduced the severity of cardiomyocyte injury and apoptosis in both in vitro and in vivo DOX‐induced cardiotoxicity models. The observed cardioprotective effects of secretory APE1/Ref‐1 were mediated via inhibition of the p53 signalling pathway and enhancement of cell viability through attenuation of oxidative stress in DOX‐treated cardiomyocytes.ConclusionsOur study provides evidence that secretory APE1/Ref‐1 has the potential to inhibit DOX‐induced cardiac toxicity by inhibiting oxidative stress and p53 related apoptosis both in vitro and in vivo. These findings suggest that secretory APE1/Ref‐1 supplementation is a promising strategy to attenuate DOX‐induced cardiomyocyte damage in a preclinical model. Further clinical investigations are essential to validate the therapeutic efficacy and safety of the intervention in human subjects.

Funder

Korea Health Industry Development Institute

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3