Electrokinetic transport of CTAB induces multiphasic behavior during capillary adsorption and desorption

Author:

Abrams Austin S.1ORCID,Eden Alexander2,Coy Bennett C.2,Huber David E.3,Pennathur Sumita2ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of California Santa Barbara Santa Barbara California USA

2. Department of Mechanical Engineering University of California Santa Barbara Santa Barbara California USA

3. California Nanosystems Institute University of California Santa Barbara Santa Barbara California USA

Abstract

AbstractCationic surfactant coatings (e.g., CTAB) are commonly used in CE to control EOF and thereby improve separation efficiencies. However, our understanding of surfactant adsorption and desorption dynamics under EOF conditions is limited. Here, we apply automated zeta potential analysis to study the adsorption and desorption kinetics of CTAB in a capillary under different transport conditions: diameter, length, voltage alternation pattern and frequency, and applied pressure. In contrast to other studies, we observe slower kinetics at distinct capillary wall zeta potential ranges. Within these ranges, which we call “stagnant regimes,” the EOF mobility significantly counteracts the electrophoretic (EP) mobility of CTA+ and hinders the net transport. By constructing a numerical model to compare with our experiments and recasting our experimental data in terms of the net CTA+ transport volume normalized by surface area, we reveal that the EP mobility of CTA+ and the capillary surface‐area‐to‐volume ratio dictate the zeta potential range and the duration of the stagnant regime and thereby govern the overall reaction kinetics. Our results indicate that further transport‐oriented studies can significantly aid in the understanding and design of electrokinetic systems utilizing CTAB and other charged surfactants.

Funder

Leona M. and Harry B. Helmsley Charitable Trust

American Diabetes Association Research Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3